Как работает зеркальный фотоаппарат? Как работает цифровой фотоаппарат Состав фотокамеры.

  • Дата: 15.03.2024

История развития фототехники привела к тому, что были выработаны определённые стандарты на интерфейс между фотографом и используемой им фототехникой. В результате цифровые фотоаппараты в большинстве своих внешних черт и органах управления повторяют наиболее совершенные модели плёночной техники. Принципиальное различие оказывается в «начинке» аппарата, в технологиях фиксации и последующей обработке изображения.

Основные элементы цифрового фотоаппарата

  • Матрица
  • Объектив
  • Затвор
  • Видеоискатели
  • Процессор
  • Дисплей
  • Вспышка

Устройство зеркального фотоаппарата

Зеркальный цифровой фотоаппарат - это фотоаппарат, в котором объектив видоискателя и объектив для захвата изображения один и тот же, также в фотоаппарате используется цифровая матрица для записи изображения. В не зеркальном фотоаппарата в видоискатель попадает изображение из отдельного маленького объектива, чаще всего находящийся над основным. Отличие также имеется и от обычного устройства фотоаппарата (мыльницы), где отображается на экране изображение, попадающее непосредственно на матрицу.

В обычном устройстве зеркального цифрового фотоаппарата свет проходит через объектив (1). Затем он достигает диафрагмы, которая регулирует его количество (2), затем свет доходит до зеркала в устройстве зеркального цифрового фотоаппарата, отражается и проходит через призму (4), чтобы перенаправить его в видоискатель (5). Информационный экран добавляет к изображению дополнительную информацию о кадре и экспозиции (зависит от модели фотокамеры). В момент, когда происходит фотографирование, зеркало устройства фотоаппарата (6) поднимается, открывается затвор фотоаппарата (7). В этот момент свет попадает прямо на матрицу фотоаппарата и происходит экспонирование кадра - фотографирование. Затем закрывается затвор, обратно опускается зеркало, и фотоаппарат готов к следующему снимку. Необходимо понимать, что весь этот сложный процесс внутри происходит за доли секунды.

C самого создания первого устройство фотоаппарата, основная схема работы его почти не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата. Будь это пленочной камерой или зеркальной цифровой фотокамерой. Рассмотрим основные отличая зеркального фотоаппарата от не зеркального. Как вы могли догадаться главное отличие в наличии специального зеркала. Это зеркальце позволяет фотографу видеть в видоискателе абсолютно такую же картинку, которая попадает на плёнку или матрицу.

Механизм работы цифрового фотоаппарата довольно сложен для неподготовленного читателя, но все-таки кратко опишем его: до нажатия клавиши затвора в зеркальных фотоаппаратах между объективом и матрицей расположено зеркало, отражаясь от которого, свет попадает в видоискатель. В незеркальных фотоаппаратах и зеркальных фотоаппаратах в режиме Live View свет из объектива падает на матрицу, при этом на ЖК экран выводится изображение, сформированное на матрице. В некоторых фотоаппаратах при этом может происходить автоматическая фокусировка. При неполном нажатии клавиши затвора (если такой режим предусмотрен) происходит выбор всех автоматически выбираемых параметров съёмки (фокусировка, определение экспопары, чувствительности фотоматериала (ISO) и т. д.). При полном нажатии происходит съёмка кадра, и считывание информации с матрицы во встроенную память фотоаппарата (буфер). Далее производится обработка полученных данных процессором с учётом установленных параметров коррекции экспозиции, ISO, баланса белого и др., после чего данные сжимаются в формат JPEG и сохраняются на флэш-карту. При съёмке в формат RAW данные сохраняются на флэш-карту без обработки процессором (возможна коррекция битых пикселей и сжатие алгоритмом без потерь). Так как запись на флэш-карту изображения занимает достаточно большое количество времени, многие фотоаппараты позволяют снимать следующий кадр до окончания записи предыдущего на флэш-карту, если в буфере есть свободное место.

Отличие устройства зеркального цифрового фотоаппарата от пленочного зеркального фотоаппарата?

1. Первое отличие очевидно: в цифровом зеркальном фотоаппарате используется электроника для записи изображения на карту памяти, в то время как устройство пленочного зеркального фотоаппарата захватывает изображение на пленку.

2. Второе отличие между цифровым и пленочным зеркальным фотоаппаратом в том, что большинство цифровых зеркальных фотоаппаратов записывают изображение на поверхность матрицы, которая по площади меньше, чем кадр в пленочной зеркалке.

3. Устройство цифрового фотоаппарата позволяет фотографу увидеть изображение сразу после съемки.

4. Более старые модели пленочных фотокамер не требуют электрического питания. Они полностью состоят из механики. А цифровым зеркальным фотоаппаратам необходимы батарейки или аккумуляторы.

5. При съёмке на пленку лучше немного переэкспонировать кадр, но для цифрового фотоаппарата лучше немного недоэкспонировать кадр.

6. Независимо от того, цифровой фотоаппарат или пленочный, оба типа фото камер имеют огромные возможности по смене объективов, пультов дистанционного управление, вспышек, элементов питания и других аксессуаров.

Впервые ощутив в своих руках фотоаппарат и попробовав сделать несколько кадров, у любого новичка возникает вполне логичный вопрос: «Как это работает?», «Из чего состоит современный фотоаппарат?». В этой статье мы постараемся как можно детальней описать устройство камеры и сделать это легко и интересно. Поехали!

Так из чего состоит цифровой фотоаппарат?

  • Тушка или как многие профессионалы говорят body (англ. «тело») – корпус, состоящий из пластика или сплава магния, не пропускает свет.
  • Байонет – к нему прикрепляют объективы.
  • Объектив – состоит из системы линз (1). С помощью него изображение объектов съемки проецируется на матрицу.
  • Диафрагма – это перегородка (2), которая находится внутри объектива, а также имеет вид лепестков. Они образуют отверстие, диаметр которого можно регулировать.
  • Зеркало (3) – важнейшая вещь. Оно направляет изображение, которое создает объектив, к фокусировочному экрану (6), а затем через пентапризму (7) в видоискатель (8).
  • Экран фокусировки – матовая пластина, с помощью которой фотограф видит изображение через видоискатель.
  • Пентапризма – элемент, который переворачивает изображение.
  • Видоискатель – своего рода «глазок», через который фотограф видит будущий снимок.
  • Сенсор – электронная матрица (5), которая, чувствуя свет, заменяет в устройстве зеркального фотоаппарата пленку.
  • Процессор – считывает и обрабатывает изображения, возникающие на матрице.
  • Карта памяти – бережно хранит наши фотографии.
  • Затвор – это механические шторки (4), которые находятся между сенсором и зеркалом фотокамеры. В момент съемки они временно открываются таким образом, чтобы свет, попал на матрицу.
  • Аккумулятор – питание камеры и всех ее элементов.
  • Штативное гнездо (11) – разъем для штатива.
  • «Горячий башмак» (10) – к нему подключается внешняя вспышка.
  • Дисплей (9) – для просмотра фотографий, а также для настройки необходимых параметров съемки.
  • Управление – различные кнопочки, колесики и диски для управления и настройки фотокамеры.

Мы перечислили далеко не все части, но лучше ограничится этим набором, дабы при разборе принципов действия в дальнейшем не запутаться.

Устройство цифрового фотоаппарата: принцип действия

Всем начинающим фотографам (особенно мальчикам) наверняка интересно, что происходит внутри фотоаппарата в тот момент, когда вы решаете сделать кадр и нажимаете на кнопку. А происходит следующее:

  1. При съемке в автоматическом режиме объектив самостоятельно фокусируется на предмете.
  2. Затем механический или оптический стабилизатор изображение делает свое дело, а именно – стабилизирует изображение.
  3. Опять же при съемке в авто-режиме, камера сама подбирает параметры: выдержку, диафрагму, ISO, а также баланс белого.
  4. После чего зеркало(3) поднимается.
  5. А затвор(4) открывается.
  6. Свет, который проходит через объектив, формирует изображение на матрице, которое потом считывается процессором и сохраняется в карту.
  7. Затвор закрыт.
  8. Зеркало опущено.

Из чего состоит объектив фотоаппарата

Сейчас существует столько различных видов и марок объективов, что разобраться в составе каждого в рамках небольшой информативной статьи просто не реально. Устройство объектива зеркального фотоаппарата может насчитывать разное количество оптических элементов или линз. Они могут соединяться друг с другом или же, напротив, разделяться небольшим пространством. В простых объективах обычно используют систему, которая может состоять от одной - до трех линз. Что касается дорогих качественных объективов, то количество линз в системе может быть около десятка и больше.

Устройство вспышки фотоаппарата

Самый главный элемент любой электронной вспышки – это импульсная ксеноновая лампочка. Это запаянная стеклянная трубка (дугообразная, спиральная, прямая или кольцевая), которая наполнена ксеноном. На концах трубки имеются впаянные электроды, снаружи располагается зажигательный электрод, который представляет собой полосочку мастики или отрезок проволоки, проводящей ток.

Вспышки бывают:

  • Встроенные – не особо мощные, дают плоское изображение, создают резкие контрастные тени. Не способны выделить структуры объекта съемки. Отлично подходят для использования при ярком естественном освещении, подсвечивают резкие тени. Но стоит отметить, что профессиональные фотографы не советуют использовать встроенную вспышку при съемке.
  • Закрепленные – мощнее, чем встроенные, также их можно настраивать как в ручном режиме, так и в автоматическом.
  • Не прикрепленные к фотоаппарату – обычно такие устанавливают на штатив. С помощью них можно изменять условия освещения, играть со светом.
  • Макровспышки – применяются для макросъемки. Выглядят как небольшое кольцо, которое устанавливается на объективе камеры.

Устройство затвора фотоаппарата

Как мы уже писали выше, затвор в фотоаппарате используется для того, чтобы перекрыть поток света, который проецирует объектив на матрицу или пленку. Открывая затвора на заданное время выдержки, количество света дозируется – так регулируют экспозицию.

Типы затворов:

  1. дисковой секторный затвор;
  2. затовры-жалюзи;
  3. центральный затвор;
  4. диафрагменный затвор;
  5. фокальный затвор.

Устройство матрицы фотоаппарата

Современная матрица представляет собой небольшую микросхему. Поверхность этой микросхемы составляет множество светочувствительных элементов, каждый из которых представляет собой самостоятельный светоприемник. Он преобразует свет в некий сигнал, который после обработки сохраняется на карте памяти. Снимок, который получает фотограф, состоит из комплекса записанных электронных сигналов с каждого светочувствительного элемента. Интересно, правда?

Устройство фотоаппарата зенит

Из чего состоит зеркальный фотоаппарат, мы уже выяснили, теперь пришел черед пленочной камеры «Зенит». Он состоит из:

  • объектива;
  • зеркала;
  • затвора;
  • фотопленки;
  • матового стекла;
  • конденсор (линза);
  • пентапризма или пентазеркало;
  • окуляр.

Конечно, мы перечислили далеко не все. Для того чтобы подробней узнать из чего состоит фотоаппарат (как цифровой, так и пленочный) вам необходимо записать в нашу , где опытный преподаватель расскажет вам о каждой гаечке и продемонстрирует все на наглядном примере.

| 0 Comments

Устройство большинства зеркальных цифровых фотоаппаратов – это фотокамера, в которой объектив для захвата изображений и объектив видоискателя один и тот же, в фотоаппарате также используется и цифровая матрица, необходимая для записи изображений. В фотоаппаратах незеркального типа изображение попадает в видоискатель посредством маленького отдельного объектива, который чаще всего располагается над основным. Также имеется отличие и от обыкновенного устройства фотоаппарата (так называемой мыльницы), где на экране отображается изображение, которое непосредственно попадает на матрицу.

Устройство фотоаппарата и его принцип действия обычно таковы, что свет проходит сквозь объектив. После этого он попадает на диафрагму, за счет которой регулируется его количество, после чего свет, в устройстве зеркального цифрового фотоаппарата, доходит до зеркала, отражается от него, проходит сквозь призму, чтобы его перенаправить в видоискатель. Посредством информационного экрана к изображению добавляется дополнительная информация об экспозиции и кадре (это зависит уже от модели конкретного аппарата).

В тот момент, когда осуществляется фотографирование, зеркало конструкции фотоаппарата поднимается, затвор фотоаппарата открывается. В этот момент прямо на матрицу фотокамеры попадает свет и осуществляется фотографирование или, если говорить более научными терминами, – экспонирование кадра. После этого затвор закрывается, зеркало опускается обратно, и можно делать следующий снимок. Следует понимать, что внутри фотокамеры весь этот, казалось бы, сложный по описанию процесс занимает всего лишь доли секунды.

С момента создания первого устройства фотосъемки, практически не было внесено никаких изменений в основную схему его работы. Через отверстие проходит свет, масштабируется, и поступает на светочувствительный элемент, установленный внутри камеры. Данный принцип одинаков, как для цифровых зеркальных агрегатов, так и для пленочных камер.

Так в чем же состоят различия в конструкции цифрового зеркального фотоаппарата и в чем заключаются его преимущества?

Зеркальный фотоаппарат, по большому счету, отличается от не зеркальных тем, что в последних отсутствует специальное зеркало. Данное зеркальце дает возможность фотографу видеть в видоискателе совершенно такую же картинку, которая попадает на матрицу или пленку.

В чем заключаются отличия между цифровым зеркальным фотоаппаратом и зеркальным пленочным фотоаппаратом?

  1. Первое отличие здесь совершенно очевидно: в зеркальной цифровой фотокамере для записи на карту памяти изображения применяется электроника, в то время, как устройство фотоаппарата пленочного зеркального типа осуществляет захват изображения на пленку.
  2. Вторая отличительная черта состоит в том, что подавляющее большинство зеркальных цифровых фотоаппаратов осуществляют запись изображений на поверхность матрицы, площадь которой меньше, нежели кадр в пленочных зеркальных камерах.
  3. Устройство цифровых фотоаппаратов позволяет фотографам просматривать полученные изображения сразу же после осуществления съемки.
  4. Для более старых моделей пленочных аппаратов не нужно электрическое питание. Они целиком состоят из механики. А вот зеркальным цифровым фотокамерам для работы необходимы аккумуляторы либо сменные батарейки.
  5. При работе с пленкой, кадр лучше будет немного переэкспонировать, а, в случае с цифровыми фотокамерами, наоборот, – немного недоэкспонировать кадр.
  6. В независимости от того, какой используется фотоаппарат – пленочный или цифровой, оба типа агрегатов обладают огромными возможностями по смене пультов дистанционного управления, объективов, элементов питания, вспышек и ряда других аксессуаров.

Из чего состоит современный фотоаппарат

Для начала, рассмотрим в общих чертах устройство современной фотокамеры. Думаю всем уже известно, что любой фотоаппарат конструктивно представляет собою камеру-обскуру – темная коробка, в одной из стенок которой имеется отверстие. На противоположной стенке от данного отверстия установлена матрица – светочувствительный сенсор. Для облегчения процесса создания фотоснимков, а также повышения оптических характеристик аппарата, современные камеры-обскуры оборудуются также дополнительными компонентами.

Основными частями современных фотоаппаратов являются:

  1. Объектив – представляет собой набор плит, посредством которых осуществляется преломление световых лучей на пленку (или матрицу), что придает изображению четкость;
  2. Затвор – устанавливается между матрицей и объективом, представляет собою непрозрачную плоскость, которая может закрываться и открываться с большой скоростью, регулируя, тем самым, время засветки матрицы (так называемая «выдержка»);
  3. Диафрагма – круглое изменяемое отверстие, обычно устроенное внутри объектива, за счет которого определяется количество поступающего на матрицу фотоаппарата света.

Теперь, когда ознакомились в общих чертах, рассмотрим более подробно устройство фотоаппарата, а также принцип работы и назначение каждого из указанных выше конструктивных частей фотокамеры.

Объектив

Это самая важная часть любого аппарата, поэтому необходимо уделить ему особенное внимание.

Объектив – это оптическое устройство, за счет которого осуществляется проецирование изображения на плоскости. Объектив состоит обычно из набора линз, которые собраны внутри оправы в единую систему.

Объективы хорошего качества должны давать на пленке геометрически правильное, резкое изображение объектов фотосъемки по всему полю кадра, для которого он предназначается. Производство объективов требует очень высокой точности, и на заводе осуществляется проверка качества каждого выпускаемого объектива. Современные объективы – это очень сложная система оптических линз. Обычная собирательная линза может также быть использована в качестве объектива (таким образом, и поступали первые фотографы), но, ввиду свойственного ей большого числа недостатков, фотоснимок получается резким лишь в небольшой центральной части и размытым, абсолютно нерезким по краям, прямые же линии на краях изображения, при этом, получаются изогнутыми. Комбинирование линз дает возможность избавиться от большей части перечисленных нами недостатков и неточностей.

Выбираем первый объектив для своего фотоаппарата

Когда вы планируете и выбираете зеркальный фотоаппарат, который в дальнейшем хотите приобрести, сразу же рекомендую подумать и об объективе. Одна и та же модель фотокамеры продаваться может как без объектива как такового, так и может быть укомплектована каким-нибудь приспособлением (на выбор производителя). Как правило, комплект фотокамеры с объективом обойдется менее дорого, нежели приобретение по отдельности этих же компонентов. Но может выйти и такая ситуация, что предлагаемый производителем объектив вас не устроит по каким-нибудь характеристикам.

Свой первый объектив необходимо выбирать из соображений его универсальности. В идеале – это должен быть объектив, который можно будет использовать для всех случаев. И от того, насколько широки будут его возможности, зависит, насколько быстро вы поймете, в каком жанре чаще всего вы снимаете, и какой специализированный объектив необходимо будет приобрести в дальнейшем. Большинство объективов выпускаются со стандартной резьбой, и устройство фотоаппарата позволяет без затруднений осуществлять замену объективов.

Даже тогда, когда вы уже приобретете отдельные объективы для каждого особого случая (портретник, макрик, телевик или ширик), то, вероятнее всего, в 99 процентах случаев вы все равно будете продолжать фотографировать универсальным объективом. Специализированные объективы бывают необходимы довольно-таки редко, но когда такой момент настает, они отрабатывают, как говорится, на все 100, и никакой универсальный объектив заменить их неспособен.

Можно, таким образом, подвести итог, что имеет смысл отнестись очень серьезно и тщательно к выбору первого объектива, чтобы он, после приобретения следующего, не оказался навсегда лежать в длинном ящике. Это особенно актуально для людей, которые много путешествуют, и им приходится снимать множество абсолютно разных сцен. Ведь в дорогу, вы согласитесь, неудобно брать лишний вес. Тем более, если его вполне можно заменить.

Диафрагма

Если вы заглянете внутрь объектива, то сможете увидеть там несколько лепестков в форме дуги. Это и есть диафрагма.

Термин «диафрагма» имеет греческое происхождение, и означает буквально «перегородка». Другое его название, уже от английского, – «апертура» – устройство, которое позволяет регулировать светосилу объектива, изменять действующее отверстие, соотношение яркости оптического изображения объекта фотосъемки к яркости собственно самого объекта.

При помощи специального привода можно свести к центру лепестки диафрагмы, за счет чего его действующее отверстие будет уменьшено. По мере уменьшения действующего отверстия диафрагмы, происходит уменьшение светосилы объектива, а также увеличивается выдержка во время съемки.

При изменении значения на одну ступень, происходит изменение диаметра отверстия диафрагмы в порядка 1,4 раз, а количество же света, который попадает на матрицу, изменяется в два раза.

Так каково же основное назначение диафрагмы и зачем данное приспособление вообще включено в устройство фотоаппарата? С одной стороны, с уменьшением рабочего (действующего) отверстия объектива, происходит ослабление светосилы. Данное свойство может нам пригодиться во время съемки объектов слишком большой яркости, к примеру, снежной поляны в ясный день либо залитого солнцем пляжа.

Скорее всего каждый человек, который читал статьи, касаемо устройства современных и не только фотокамер, задавал себе вопрос – а почему в схемах коробка указана с чувствительным элементом, объектив с линзами, и даже затвор удостоился места в данных описаниях, а про диафрагму же не сказано ничего. А все очень просто: фотокамера способна делать снимки и без помощи диафрагмы. Вот оно как получается! Заинтригованы?

Если говорить простыми словами, диафрагма – это перегородка. Как я говорил ранее, она является экспопарой вместе с выдержкой: диафрагма может быть открыта, а выдержка сделана более краткой, а можно и наоборот – отверстие диафрагмы сделать меньшим размером и увеличить продолжительность выдержки. Экспопара, на первый взгляд, является взаимозаменяемой – как диафрагма, так и выдержка оказывает определенное влияние на количество света, пропускаемого на светочувствительный элемент фотокамеры, но это лишь на первый взгляд. На что диафрагма оказывает влияние в первую очередь, так это на глубину резко изображаемого пространства (далее ГРИП), или, говоря более простым языком, – на глубину резкости. Именно по этой причине для фотографа диафрагма является очень функциональным рычагом, способствующим достижению требуемого творческого эффекта.

Я не буду мучить вас различными заумными определениями типа «диафрагма является прямопропорциональной квадрату корня такого-то значения…» так как на практике это все не запомнится все равно. Главное, что нужно знать, так это то, что диафрагма обозначается как f, и чем большим будет ее цифровое значение, тем меньшим будет относительное отверстие и в обратном направлении. К примеру, если мы, на объективе с относительным отверстием в 2.8, выставим значение f диафрагмы 2,8, то это и будет означать, что на данном объективе будет полностью открыта перегородка. И это является как раз тем случаем, когда в процессе фотосъемки диафрагма участия не принимает. Свадебные фотографы, да и не только они, очень часто осуществляют съемку на полностью открытой диафрагме. А вообще, принято считать, что чем значение диафрагмы будет меньше, тем более интересно будет вырисован объект.
Конструкция перегородки дает возможность изменения рабочего отверстия объектива.

Но есть также и еще одна практическая характеристика диафрагмы, которая зачастую применяется в процессе художественной фотосъемки. Чем меньше будет установлено значение отверстия диафрагмы, тем большая будет получена глубина резко изображаемого пространства, либо, как еще принято говорить в среде фотографов, глубина резкости, то есть область четкой фокусировки по отношению к объекту фотосъемки. Значение ГРИП напрямую зависит от фокусного расстояния, диафрагмы, размера матрицы, а также от расстояния до объекта. Наиболее эффективным способом управления ГРИП является регулировка диафрагмы.

Устройство фотоаппарата таково, что при работе с различными сюжетами фотосъемки, требуется разная ГРИП.

Теперь поговорим о наиболее главном. Давайте разберемся более тщательно с тем, что нам может дать уменьшение или увеличение размеров отверстия диафрагмы. Чем меньше будет установлено отверстие диафрагмы, тем большей будет глубина ГРИП, или, если кратко, – глубина резкости, область фокусировки вокруг объекта фотосъемки.

К примеру, фотографы, во время съемки пейзажей, закрывают диафрагму максимально возможно, для получения резкого изображения, как удаленных деталей, так и собственно ближнего плана. И наоборот: при портретной съемке используют традиционно малую ГРИП, для отделения человеческого лица от фона фотографии.

Таким образом, одним из важнейших инструментов фотомастера является возможность регулировки глубины резкости при помощи диафрагмы.

В цифровых фотоаппаратах компактного размера, ввиду малого размера матрицы, ГРИП будет велика при любом положении диафрагмы. Данное обстоятельство может помешать реализации определенных творческих идей. Наиболее эффективным методом регулирования ГРИП, как уже было неоднократно сказано, является регулировка положения диафрагмы, точнее – размера ее отверстия.

При открытой диафрагме будет получен эффект размытия заднего фона. Это можете видеть на нашем примере с цветком. Резкость наведена на ближние края цветка. А задняя же часть кадра красиво размыта, что дает зрителю возможность сразу понять творческий замысел фотографа, сделавшего данный снимок.

Низкое значение ГРИП

Данный прием широко используется в портретной фотосъемке, когда профессиональные фотографы делают акцент на лице портретируемого человека, а задняя же часть кадра (фон) должна быть размыта.

За счет низкого ГРИП можно сразу же понять, на что обращает внимание фотограф.

Хотелось бы отметить еще один очень важный момент. Низкая глубина при резко изображаемом пространстве действует не только лишь на расстояние от объекта фотосъемки вдаль, а и в ширину. Данный факт необходимо также принять во внимание и при выборе требуемой диафрагмы. Рассмотрим все это на конкретном примере. Предположим, что вам нужно сделать снимок широкого объекта, либо же группу людей, которые стоят друг к другу плечом, со сравнительно небольшого расстояния. В том случае, если вы решите вдруг сделать снимок с максимально размытым фотом и откроете диафрагму полностью, можете быть готовы к тому, что люди, которые стоят ближе всего к краям кадра, получатся на фото расфокусированы. Из этого можно прийти к выводу, что глубина резкости распространяется по всем сторонам от фокусной точки, которая расположена на оптической оси объектива вашего фотоаппарата.

Затвор

Следующий элемент, входящий в устройство фотоаппарата, – это затвор.

Затвор отмеряет период времени, на протяжение которого на матрицу фотоаппарата воздействует свет. Затвор фотокамеры – это невидимый, но очень важный элемент системы фотоаппарата. Непрофессиональному фотографу затвор фотокамеры не виден, но зато всегда слышен.

Что представляет собой затвор? Для чего он вообще нужен?

Данный конструктивный элемент фотосистемы выполняет одну из главнейших функций захвата изображения на цифровую матрицу или пленку. Основная задача затвора состоит в регулировании прохождения через оптическую систему аппарата на светочувствительный элемент фотокамеры светового потока.

Если вам когда-нибудь приходилось слышать о времени захвата изображений фотокамерой – «выдержке» – то затвор фотоаппарата – это основное устройство, с помощью которого данное время можно контролировать.

Что происходит с затвором в момент фотосъемки?

Затвор фотокамеры представляет собою механическое устройство, которое в большинстве случаев представлено в виде шторки (горизонтальные либо вертикальные). Необходимо понимать тот факт, что существует минимальный период времени, в течении которого данные шторки успеют закрыться и открыться, что позволит световому потоку проэкспонировать кадр, пройдя на матрицу или фотопленку.

Так каким же образом осуществляется работа затвора фотокамеры в тех случаях, когда выдержки становятся, как говорится, сверхкороткими (значение 1/5000 либо 1/7000). На такие случаи в конструкции цифрового фотоаппарата предусмотрен цифровой затвор, регулирование которого осуществляется матрицей и электроникой. Физический затвор фотокамеры на сверхкоротких выдержках успевает закрываться и открываться на своей максимально возможной скорости, в момент чего на матрицу аппарата поступает цифровой сигнал, свидетельствующий о начале захвата изображение, и спустя доли секунды – другой сигнал, уже о прекращении реагирования на свет.

Вы можете спросить: а зачем вообще тогда нужны в фотоаппарате эти шторки, то есть затвор? Так вот, в современных моделях цифровых фотоаппаратов, в большей части случаев, затвор осуществляет функции защиты матрицы камеры от попадания на нее грязи и пыли, что может нанести ей непоправимые повреждения. А матрица является наиболее дорогостоящим элементом всей цифровой фотокамеры. Время, на протяжении которого затвор фотоаппарата, для получения кадра, будет оставаться открытым, принято называть выдержкой. Выдержка связана с общей освещенности снимаемой сцены и со светосилой объектива. Чем меньше светосила объектива и чем темнее объект фотосъемки, тем дольше необходимо сделать выдержку, для получения правильного экспонирования кадра.

Устройство фотоаппаратов, как пленочных, так и современных зеркальных, предусматривает обязательное наличие затвора – механического устройства, в виде двух непрозрачных шторок, которые закрывают матрицу (сенсор). Из-за наличия этих шторок в цифровых зеркальных фотоаппаратах невозможна наводка (визирование) по дисплею – матрица ведь закрыта, и изображение на дисплей передаваться попросту не может. Когда нажимается кнопка спуска, шторки за счет электромагнитов или пружин приводятся в движение, для света открывается доступ, и на сенсоре осуществляется формирование изображения. В цифровых фотокамерах, на которых установлена несъемная оптика, как правило, стоит электронный затвор, то есть матрица, на время экспонирования, попросту включается в режим записи, а в течении же всего остального времени на дисплей выводится сигнал для наводки на объект. Среди преимуществ электронного затвора можно выделить возможность выполнения съемки на сверхкоротких выдержках, которые, в силу инерции, невозможно осуществить в случае с механическим затвором.

В некоторые модели цифровых фотоаппаратов устанавливается затвор комбинированного типа, который при сверхкоротких выдержках работает как электронное устройство, а на более же длинных к процессу подключается механика. В зеркальных фотокамерах современного образце некоторых производителей возможно также визирование по электронному дисплею аппарата. Подобное устройство зеркальных фотокамер позволяет постепенно избавляться им от своих недостатков, без утери характерных для них достоинств.

А как же вспышка?

Чуть было не упустил еще один фактор, который в достаточной мере влияет на экспозицию – это вспышка. Здесь мы рассмотрим в общих чертах только штатную, то есть бортовую «лягушку». Хотя, прошу прощения. На мыльницах это же совсем не «лягушка», ведь она не выпрыгивает. Данная вспышка обладает рядом режимов, которые, в принципе, зависят от режима самого фотоаппарата. Полный список «услуг» вспышка, как правило, может предоставить лишь в тех случаях, когда камера установлена в режиме «AUTO».

Итак, какие же различают режимы.

  1. Автоматический . Вспышка автоматически будет срабатывать (или не срабатывать) по мере необходимости. При этом, регулируется длительность светового импульса, в зависимости от имеющейся освещенности. Удобно это тем, что экономит заряд аккумулятора, но не всегда может быть использовано, таково уж устройство фотоаппарата. К примеру – съемка против света.
  2. Принудительная вспышка . Будет срабатывать всегда, в независимости от уровня освещенности. Не доступна регулировка длительности импульса, то есть вспышка полностью использует свое ведущее число. Может быть использована в большинстве случаев фотосъемки, но расход энергии более высокий, чем при предыдущем режиме.
  3. Медленная синхронизация . Скорость затвора будет установлена, при этом, на более продолжительном значении. При использовании вспышки, стандартная скорость затвора составляет 1/90 с, то есть «90». Это делается для того, чтобы была возможность проработки фона, так как вспышка обычно до него «не добивает».
  4. Без вспышки . При этом режиме вспышка срабатывать не будет. Это делается для того, чтобы не осуществлялась съемка с автоматической вспышкой там, где это не нужно или запрещено, а также для получения некоторых эффектов, где необходим естественный свет. Изображение становится, при этом, более естественным. В продвинутых аппаратах также «открывает» ряд некоторых возможностей, к примеру, расширяется «перечень» значений в выборе установки баланса белого.

Для первый трех указанных выше режимов доступен режим уменьшения «эффекта красных глаз». В данном случае перед основной вспышкой срабатывает серия коротких вспышек без использования затвора. Это делается для того, чтобы у находящихся в темноте людей сузились зрачки, и глазное дно не отражало красный свет. Рационально будет использовать только во время съемки людей, а во всех остальных же случаях – это просто трата времени перед срабатыванием затвора и энергии.

Следует помнить, что использование штатной вспышки будет делать отображение лиц людей и предметов на снимках плоскими. По крайней мере, необходимо стараться сделать снимок под некоторым углом, чтобы появились тени. Но и переусердствовать не нужно, так как при слишком больших углах будет появляться слишком большой контраст.

На этом данную тему спешу завершить, а то и так уже достаточно объемной получилась. Если что-то упустил, рассмотрю в следующих постах.

Каждый момент этой жизни бесценен вне зависимости от того грустный он или весёлый. Потому что это и есть жизнь. И нужно наслаждаться этими самыми моментами. Проблема лишь в том, что мы не настолько знаем свой мозг, чтобы уместить в нем все воспоминания. Но человек и вечный двигатель прогресса - лень, сделали такую чудо-штуку как фотоаппарат. А что же это такое. В моём понимании - это есть некое устройство, позволяющее выбирать и фиксировать на каком-либо носителе выбранное изображение, план местности, проекцию пространства - как угодно называйте.

Итак, носители есть разные, и в зависимости от его типа происходит первое деление в классификации фотоаппаратов.
Итак это плёночные и цифровые (возможно есть еще и другие)

В плёночных фотоаппаратах носителем инф-ции является плёнка. Плёнка - это кусок пластика(полиэстер, нитрат или ацетат целлюлозы) и нанесённая на него фотоэмульсия. Фотоэмульсия - это химический состав, который обладает светочувствитльностью. То есть в зависимости от степени освещения(то бишь от величины потока электро-магнитной волны) изменяет свои свойства, образуя скрытое изображение. Его потом преобразуют в явное. Фотоэмульсия состоит из галогенидов серебра в растворе защитного коллоида.

В цифровых фотоаппаратах изображение попадает на матрицу. Матрица - это интегральная микросхема с фотодиодами. Фотодиоды преобразуют свет в цифровой сигнал.

Одна из основных составляющих частей камеры - видоискатель. Видоискатель позволяет вам «прицеливаться» на объект съёмки. По типу видоискателя фотоаппараты условно делят на зеркальные, псевдозеркальные и «мыльницы „. У мыльниц в качестве видоискателя выступает маленький экран на задней стороне. Псевдозеркальные - те же мыльницы, но с расширенным количеством функций, внешним видом, напоминающим зеркалку и дыркой над экраном - глазком для прицеливания(кстати в глазке тоже экран). В отличии от зеркальных не имеют собственно зеркала и призмы, управление в основном электронное, размер матрицы небольшой, поэтому идет больше шумов. Но по сравнению с мыльницами имеют хорошую оптику, позволяют вручную настраивать параметры съемки.

Устройство зеркального фотоаппарата

Итак, основные элемненты цифровой зеркальной камеры(далее ЦЗК) приведены на следующем рисунке:

Ингридиенты:

1. Объектив. То что ловит и пропускает через систему линз изображение.
2. Собственно зеркало. Здесь оно показано в положении т.н. визирования, т.е. когда мы ловим объект.
3. Затвор. То что закрывает матрицу
4. Матрица. Светочувствительный материал
5. Зеркало(еще одно). Здесь оно в положении фотографирования
6. Линза видоискателя.
7. Пентапризма.
8. Окуляр видоискателя

Точечной линией показано, как идет изображение в положении визирования. Сначала свет проходит через систему линз объектива. Попадая в корпус камеры он отражается от зеркала(2), и идет через матовую линзу в пентапризму(7). Пентапризма(7) делает переворот изображения в его естественное(для нас) положение. Если бы не пентапрзма, то в окуляре видоискателя мы бы видели изображение вверх ногами.
Когда мы прицелились на объект и нажимаем кнопокочку съемки, то происходит следующее: Зеркало(2) убирается, затвор(3) поднимается(сворачивается, телепортируется - нужное подчеркнуть) на время выдержки и свет идет прямёхонько на матрицу, которая в течении времени выдержки облучается светом и формирует изображение.

Если кто не читал статью, настоятельно рекомендую ознакомиться, потому что тема сегодняшней статьи будет перекликаться с предыдущей. Для всех остальных еще раз повторю резюме. Существует три типа фотоаппаратов: компактные, беззеркальные и зеркальные. Компактные – самые простые, а зеркальные – самые продвинутые. Практический вывод статьи заключался в том, что для более-менее серьезного занятия фотографией следует остановить свой выбор на беззеркалках и зеркалках.

Сегодня мы поговорим об устройстве фотоаппарата. Как и в любом деле, нужно понимать принцип работы своего инструмента для уверенного управления. Не обязательно досконально знать устройство, но основные узлы и принцип действия понимать надо. Это позволит взглянуть на фотоаппарат с другой стороны – не как на черный ящик со входным сигналом в виде света и выходом в виде готового изображения, а как на устройство, в котором вы разбираетесь и понимаете, куда дальше проходит свет и как получается итоговый результат. Компактные камеры затрагивать не будем, а поговорим о зеркальных и беззеркальных аппаратах.

Устройство зеркального фотоаппарата

Глобально фотоаппарат состоит из двух частей: фотоаппарата (его еще называют body — тушка) и объектива. Тушка выглядит следующим образом:

Тушка — вид спереди

Тушка – вид сверху

А вот так выглядит фотоаппарат в комплекте с объективом:

Теперь посмотрим на схематическое изображение фотоаппарата. Схема будет отображать структуру фотоаппарата “в разрезе” с такого же ракурса, как на последнем изображении. На схеме цифрами обозначены основные узлы, которые мы и будем рассматривать.


После настройки всех параметров, кадрирования и фокусировки фотограф нажимает кнопку спуска. При этом зеркало поднимается и поток света попадает на главный элемент фотоаппарата – матрицу.

    Как видите, поднимается зеркало и открывается затвор 1. Затвор в зеркалках механический и определяет время, в течении которого свет будет поступать на матрицу 2. Это время называется выдержкой. Также его называют временем экспонирования матрицы. Основные характеристики затвора: лаг затвора и его скорость. Лаг затвора определяет, как быстро откроются шторки затвора после нажатия кнопки спуска – чем меньше лаг, тем больше вероятность, что вон та проносящаяся мимо вас машина, которую вы пытаетесь снять, получится в фокусе, не смазана и скадрирована так, как вы это сделали при помощи видоискателя. У зеркалок и беззеркалок лаг затвора небольшой и измеряется в мс (миллисекундах). Скорость затвора определяет минимальное время, в течении которого будет открыт затвор – т.е. минимальную выдержку. На бюджетных камерах и камерах среднего уровня минимальная выдержка – 1/4000 с, на дорогих (в основном полнокадровых) – 1/8000 с. Когда зеркало поднято, свет не поступает ни на систему фокусировки, ни на пентапризму через фокусировочный экран, а попадает прямо на матрицу через открытый затвор. Когда вы делаете кадр зеркальным фотоаппаратом и при этом все время смотрите в видоискатель, то после нажатия на спуск вы на время увидите черное пятно, а не изображение. Это время определяется выдержкой. Если установить выдержку 5 с, к примеру, то после нажатия на кнопку спуска вы будете наблюдать черное пятно в течении 5 секунд. После окончания экспонирования матрицы зеркало возвращается в исходное положение и свет опять поступает в видоискатель. ЭТО ВАЖНО! Как видите, существуют два основных элемента, регулирующих поток света, попадающий на сенсор. Это диафрагма 2 (см. предыдущую схему), которая определяет количество пропускаемого света и затвор, который регулирует выдержку – время, за которое свет попадает на матрицу. Эти понятия лежат в основе фотографии. Их вариациями достигаются различные эффекты и важно понять их физический смысл.

    Матрица фотоаппарата 2 представляет собой микросхему со светочувствительными элементами (фотодиодами), которые реагируют на свет. Перед матрицей стоит светофильтр, который отвечает за получение цветной картинки. Двумя важными характеристиками матрицы можно считать ее размер и соотношение сигнал/шум. Чем выше и то, и другое, тем лучше. Подробнее о фотоматрицах мы поговорим в отдельной статье, т.к. это очень обширная тема.

С матрицы изображение поступает на АЦП (аналого-цифровой преобразователь), оттуда в процессор, обрабатывается (или не обрабатывается, если ведется съемка в RAW) и сохраняется на карту памяти.

Еще к важным деталям зеркалок можно отнести репетир диафрагмы. Дело в том, что фокусировка производится при полностью открытой диафрагме (насколько это возможно, определяется конструкцией объектива). Выставляя в настройках закрытую диафрагму, фотограф не видит изменений в видоискателе. В частности, ГРИП остается постоянной. Чтобы увидеть, каким будет выходной кадр, можно нажать на кнопку, диафрагма прикроется до установленного значения и вы увидите изменения до нажатия на кнопку спуска. Репетир диафрагмы устанавливается на большинстве зеркалок, но мало кто им пользуется: новички часто о нем не знают или не понимают назначения, а опытные фотографы примерно знают, какой будет ГРИП в тех или иных условиях и им легче сделать пробный кадр и в случае необходимости поменять настройки.

Устройство беззеркального фотоаппарата

Давайте сразу посмотрим на схему и будем обсуждать предметно.

Беззеркалки не в пример проще зеркалок и по сути являются их упрощенным вариантом. В них нет зеркала и сложной системы фазовой фокусировки, а также установлен видоискатель другого типа.

    Световой поток попадает через объектив на матрицу 1. Естественно, свет проходит через диафрагму в объективе. Она не обозначена на схеме, но, думаю, по аналогии с зеркалками вы догадались, где она расположена, ведь объективы зеркалок и беззеркалок по конструкции практически не отличаются (разве что размерами, байонетом и количеством линз). Более того, большинство объективов от зеркалок через переходники можно установить на беззеркалки. В беззеркалках нет затвора (точнее, он электронный), поэтому выдержка регулируется временем, в течении которого матрица включена (принимает фотоны). Что касается размера матрицы, то он соответствует формату Micro 4/3 или APS-C. Второй используется чаще и полностью соответствует матрицам, встраиваемым в зеркалки от бюджетного до продвинутого любительского сегмента. Сейчас стали появляться полнокадровые беззеркалки. Думаю, в будущем количество FF (Full Frame — полнокадровых) беззеркалок будет увеличиваться.

    На схеме цифрой 2 обозначен процессор, на который поступает информация, полученная матрицей.

    Под цифрой 3 изображен экран, на который выводится изображение в режиме реального времени (режим Live View). В отличии от зеркалок в беззеркалках это не сложно сделать, потому что световой поток не преграждается зеркалом, а беспрепятственно поступает на матрицу.

В общем все выглядит просто замечательно – убраны сложные конструктивные механические элементы (зеркало, датчики фокусировки, фокусировочный экран, пентапризма, затвор). Это значительно облегчило и удешевило производство, уменьшило в размере и весе аппараты, но также создало массу других проблем. Надеюсь, вы помните их из раздела о беззеркалках в статье о . Если нет, то сейчас мы их обсудим, попутно разбирая, какими техническими особенностями обусловлены эти недостатки.

Первая главная проблема – видоискатель. Так как свет попадает прямо на матрицу и никуда не отражается, то мы не можем видеть изображение напрямую. Мы видим лишь то, что попадает на матрицу, потом непонятным образом преобразуется в процессоре и выводится на непонятно какой экран. Т.е. в системе существует множество погрешностей. Мало того, у каждого элемента имеются свои задержки и изображение мы видим не сразу, что неприятно при съемке динамических сцен (из-за постоянно улучшающихся характеристик процессоров, экранов видоискателей и матриц это не так критично, но все равно имеет место быть). Изображение выводится на электронный видоискатель, у которого высокое разрешение, но которое все равно не сравнится с разрешением глаза. Электронные видоискатели имеют свойство слепнуть при ярком свете из-за ограниченной яркости и контрастности. Но более чем вероятно, что в будущем эту проблему преодолеют и чистое изображение, пропущенное через ряд зеркал канет лету также, как и “правильная пленочная фотография”.

Вторая проблема возникла из-за отсутствия фазовых датчиков автофокуса. Вместо них используется контрастный метод, который по контуру определяет, что должно быть в фокусе, а что – нет. При этом линзы объектива перемещаются на определенное расстояние, определяется контрастность сцены, линзы перемещаются опять и снова определяется контрастность. И так до тех пор, пока не будет достигнута максимальная контрастность и камера не сфокусируется. Это занимает слишком много времени и такая система менее точна, чем фазовая. Но в то же время контрастный автофокус представляет собой программную функцию и не занимает дополнительного места. Сейчас в матрицы беззеркалок уже научились встраивать фазовые датчики, получив гибридный автофокус. По скорости он сопоставим с системой автофокусировки у зеркалок, но пока что устанавливается только в избранных дорогих моделях. Думаю, в будущем эта проблема также будет решена.

Третья проблема представляет собой низкую автономность из-за напичканности электроникой, которая постоянно работает. Если фотограф работает с камерой, то все это время свет поступает на матрицу, постоянно обрабатывается процессором и выводится на экран или электронный видоискатель с высокой скоростью обновления – фотограф ведь должен видеть происходящее в реальном времени, а не в записи. Кстати, последний (я про видоискатель) тоже потребляет энергию, и не мало, т.к. его разрешение высоко и яркость с контрастностью должны быть на уровне. Отмечу, что при увеличении плотности пикселей, т.е. при уменьшении их размера при одном и том же энергопотреблении неизбежно снижается яркость и контрастность. Поэтому на питание качественных экранов с высоким разрешением расходуется много энергии. В сравнении с зеркалками количество кадров, которое можно сделать от одного заряда батареи, в несколько раз меньше. Пока что эта проблема критична, потому что значительно уменьшить энергопотребление не получится, а рассчитывать на прорыв в элементах питания не приходится. По крайней мере такая проблема долгое время существует на рынке ноутбуков, планшетов и смартфонов и ее решение успехом не увенчалось.

Четвертая проблема представляет собой как преимущество, так и недостаток. Речь идет об эргономике камеры. Вследствие избавления от “ненужных элементов” зеркалочного происхождения уменьшились размеры. Но беззеркалки пытаются позиционировать как замену зеркалкам и размеры матриц это подтверждают. Соответственно, используются объективы не самого маленького размера. Небольшая беззеркалка, похожая на цифрокомпакт, просто исчезает из поля зрения при использовании телевика (объектива с большим фокусным расстоянием, сильно приближающим объекты). Также многие элементы управления спрятаны в меню. В зеркалках они вынесены на корпус в виде кнопок. Да и просто приятнее работать с аппаратом, который нормально ложится в руку, не норовит выскользнуть и в котором можно наощупь, не задумываясь оперативно менять настройки. Но размер камеры – это палка о двух концах. С одной стороны большой размер обладает выше описанными преимуществами, а с другой — малая камера помещается в любой карман, ее можно чаще брать с собой и люди обращают на нее меньше внимания.

Что касается пятой проблемы, то она связана с оптикой. Пока что существует множество байонетов (типов креплений объективов к камерам). Под них сделано на порядок меньше объективов, чем под байонеты основных систем зеркалок. Проблема решается установкой переходников, с помощью которых на беззеркалках можно использовать абсолютное большинство зеркалочных объективов. Простите за каламбур)

Устройство компактного фотоаппарата

Что касается компактов, то у них масса ограничений, основным из которых является малый размер матрицы. Это не позволяет получить картинку с низким шумом, высоким динамическим диапазоном, качественно размыть фон и накладывает еще массу ограничений. Далее идет система автофокусировки. Если в зеркалках и беззеркалках используется фазовый и контрастный виды автофокуса, которые относятся к пассивному типу фокусировки, так как ничего не излучают, то в компактах используется активный автофокус. Камерой излучается импульс инфракрасного света, который отражается от объекта и попадает обратно в камеру. По времени прохождения этого импульса определяется расстояние до объекта. Такая система работает очень медленно и не работает на значительных расстояниях.

В компактах используется несменная низкокачественная оптика. Для них недоступен широкий набор аксессуаров, как для старших собратьев. Визирование происходит в режиме Live View по дисплею или через видоискатель. Последний представляет собой обычное стекло не очень хорошего качества, не связан с оптической системой фотоаппарата, из-за чего возникает неправильное кадрирование. Особенно сильно это проявляется при съемке близлежащих объектов. Продолжительность работы компактов от одного заряда невелика, корпус маленький и его эргономичность еще намного хуже, чем у беззеркалок. Количество доступных настроек ограничено и они спрятаны в глубине меню.

Если говорить об устройстве компактов, то оно простое и представляет собой упрощенную беззеркалку. Здесь меньше и хуже матрица, другой тип автофокуса, нет нормального видоискателя, отсутствует возможность замены объективов, невысокая продолжительность работы от аккумулятора и непродуманная эргономика.

Вывод

Вкратце мы рассмотрели устройство фотоаппаратов различных типов. Думаю, теперь вы имеете общее представление о внутреннем строении камер. Эта тема очень обширна, но для понимания и управления процессами, происходящими при съемке теми или иными фотоаппаратами при различных настройках и с разной оптикой вышеизложенной информации, думаю, будет достаточно. В дальнейшем мы все-таки поговорим об отдельных важнейших элементах: матрице, системах автофокусировки и объективах. А пока давайте на этом остановимся.